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Abstract-The potential energy principle of the cohesive crack model is discussed under the con­
dition that the loading device has finite compliance. The relation between crack instability and the
second-order variance of the potential energy is examined. With linear softening law. a simple peak
load solution is derived from the singularity condition of the potential energy. The obtained
formulation is then applied to infinite strips with either central cracks or edge cracks loaded by
remote uniform tension. The convergence of the cohesive crack model to linear elastic fracture
mechanics solution is demonstrated. It is emphasized that although the concept of failure by crack
instability is not ubiquitous. it can provide a common ground to unify linear and nonlinear fracture
mechanics as well as tensile strength theory.

I. INTRODUCTION

In the current framework of solid mechanics. a solid is considered to bc failed either by
excessive deformation. or by a loss of stability as in the example of Euler's strut. or by
breakage. In the latter case. whcn material is clastic and nonlinear hardening deformation
(such as plastic flow) is insignificant. failure by breakage is either studied by conventional
(tensile) strength theory. or by fracture mechanics. Both theories assume that the breakage
of a solid can be associated with certain constant critical quantities which in turn can be
extracted from the deformation .lnd stress fields in the solids. In this perspective. fracture
mechanics and strength theories are similar in nature. except that the critical quantities
used in fracture mechanics arc size dependent. while the critical quantities in ordinary
strength theories arc size independent.

It is generally accepted that while fracture mechanics is suitable for the prediction of
rupture load when the crack size is large (compared to an inherent material length), strength
theories should be used when the craek size is small. Furthermore, between these two
extremes, there should be a nonlinear fracture mechanics that ean provide a transition from
a strength theory to fraeture mechanics. It should be remembered that the proccss of
cracking has to be accompanicd by stress softening and deformation localization. Such
softening and localization is the major source of nonlinearity for a class of materials, which
can be classified as quasi-brittle. Griffith (1920) realized that the effect of such softening
and localization was not considered in his theory, and he provided an argument on why
such softening behavior can be neglected for the case of brittle fracture:

" ... The molecular attraction across such a crack must be small except very ncar its
ends; it may therefore be said that the application of the mathematical theory of elasticity
on the basis that the crack is assumed to be a traction-free surface, must give the stresses
correctly at all points of the body, with the exception of those near the ends of thc crack.
In a sufficiently large crack the error in the strain encrgy so calculatcd must be negligible."

However, in later studies of fracture mechanics, the softening and localization behavior
is still not considered. even whcn the zone of crack formation is no longcr small and
negligible. Irwin (1948, 1961) is responsible for advocating the idea that such a nonlinear
zone may be taken care of by modifying the concept of surface energy and using an effective
crack length. In recent developments the hardening part of nonlinearity is included in
constitutive laws. Research has usually focused on devising better fracture critcria that can
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somehow characterize nonlinear deformation around the crack tip. Since Griffith's argu­
ment can no longer be applied in these cases due to the presence of a considerable zone of
crack formation, the validity of neglecting the softening effect in studies of nonlinear fracture
mechanics for quasi-brittle material should be seriously questioned.

An alternative approach in which attraction is included in the equilibrium equations
was forwarded by Barenblatt (1962). Among his many discoveries. Barenblatt demonstrated
that when attraction is considered, a fracture mechanics without stress singularity can be
established; furthermore. if the zone of attraction is vanishingly small. this theory predicts
the same rupture load as Griffith theory. However. Barenblatt did not consider the case
where process zone (that is. the zone of attraction. the crack formation zone) is not small.
On the other hand. although Dugdale's cohesive crack model (1960) has no restriction on
process zone size, the feature of stress softening is not captured in his assumption ofconstant
cohesion. Based on finite element techniq ue. Hillerborg et al. (1976) developed a numerical
method to calculate crack formation and propagation. Softening cohesion law is formally
introduced as a constitutive relation for crack formation. For each given process zone
length. the load and load-line deflection can be determined by requiring that stress at the
crack tip be equal to tensile strength. The most interesting feature is that the rupture load
can now be naturally defIned as the peak value of the load and load-line deflection curve.
Hence. constant critical quantitit:s art: no longt:r nt:t:dt:d as in tht: conventional nonlint:ar
fracturc mt:chanics.

Hilkrborg's coht:sivt: crack model was summarized as a pott:ntial energy principle
advanct:d by Li and liang (I 992a) for the first time. As will be briefly reviewed in the
next st:ction. Griflith's concept of energy balance is extt:nded to include clTcctive crack
propagation in the new formulation. In particular. the rupture load of the cohesive crack
model is idt:ntified with the critical condition of the second-order variation of the potential
energy. This discovery seems to have its far-reaching implication in the study of solid
mechanics. In f;lct. it demonstrated for the first time that failure by breakage can also be
pen:eived as a stability problem of solid mechanics, provided that proper constitutive laws
arc includcd in tht: mathematical modeling.

Wht:n linear-softening coht:sion law is used. such a theory was immediately applied to
solvt: tht: pt:ak load of 3-point beams (li and liang, 1992a), under certain structural
mechanics type assumptions on crack opening profile, a very successful analytic solution
was obtained. In the same line, a numerical method was developed by li and Liang (1992b)
to solve the peak load without utilizing any assumption on crack opening profile. Using an
eigenvalue problem introduced then:in, it was shown that under the critical condition, the
peak load can be determined without even referring to the crack tip criterion. later on,
such a numaical method was n:formulated in the space of continuous functions (Li and
liang, I992c). With this method, the peak load of the Gritllth problem, that is, a finite
crack in an intinite plate under remote uniform tension, was solved in the whole range.
Numerically it was confirmed that the stability theory will converge to strength theory in
the small size limit, and will approach the mechanics of brittle fracture in the large size
limit. Thus it is demonstrated that tht: stability concept can serve as a theoretical foundation
for the breakagt: failure of solids, both strength theory and mechanics of brittle fracture
C'1I1 be obtained as the limiting cases of the stability theory.

In this paper, the behavior of peak load will be studied for an infinite strip under
uniform tension with central cr'lcks or symmetrically located edge cracks. Due to the
interaction between crack ;lI1d boundary, m.lny new features of the peak load solution art:
revealed.

2. THEORY OF CRACK STABILITY

As was shown by li and liang (1992a), the cohesive crack model can be represented
by a potential energy principle. Under the condition of proportional and monotonic loading,
the system shown in Fig. I can be assigned a potential energy fI for a given crack length a
as follows:
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Fig. I. S<:hematics or an e.lastic body with a cuhesive crack. the luading device has finite compliance.

D(II,.P.a) = f. W(C,/)dV-pf h,Ii,dA- \If p~+f <t>(II")dA.
~ ~ r - ,t p

( I)

where W is the strain energy density function defined on body V; Ii, is the admissible
displacement field of the system. and E,/ its corresponding strain field; h, is the given
boundary force distribution defined on A r. and P is the loading parameter: Cf is the
compliance ofloading devices; <t> is called a surface potential defined in the part of boundary
A p called the process zone in which cohesive forces act across the crack surfaces; 1\' is the
crack separation displacement (normal displacement discontinuity across crack surfaces).
The surface potential <I> can be defined for any given cohesion law (T = f(lI') as:

<IJ(II') = f" f(I') dr.
II

(2)

The above dclinition is a straightforward generalization of surface potential when
surface force varies with surface displacement. When the cohesion law is linear-softening
up to a threshold value II',. its corresponding surface potential can be expressed as:

f"( I' ) ("'~ )<IJ(II')=}; 1-. dl'=./; 11'-." • O~II·~II·,.
II Ht,,; _Hi,;

(3)

where}; is the tensile strength of the material. When the separation II" approaches 1\',. the
cohesive stress (J decre.tses to zero. Therefrom. <IJ becomes a constant.

The displacement equilibrium of the system is defined by equating to zero the lirst­
order variation of the potential II with respect to displacement:

o= Du ' 1511, = f (J'Je5I:" d V - P f h,DII, dA - f f( 11')1511' dA.
,. AI' .-4,.

(4)

In addition to the displacement equilibrium as described by (4). there is also the concept
of erack equilibrium. For a given crack length 1I. the load P is to be determined by the
following crack equilibrium equation. In Hillerborg's model. crack equilibrium is expn:ssed
as the condition when the tensile stress at crack tip is equal to tensile strength of the material.
The explicit formulation of the crack equilibrium condition in the following form is due to
Li and Liang (1992a):

DO () (1 f C.lf ') D f0= Du = -:1- = ~i- WdV-P h,lij dA-'1 P- +.::;- <IJ(II')d/l.
ell ell ,. '~r - ('£I A,

(5)

The first three terms in the parentheses on the right-hand side of eqn (5) can be recognized
as the energy release rate; whereas the last term is the energy needed to create a unit area
in the process zone and therefore can be referred to as the energy consumption rate. In
Griffith theory and Barenblatt theory, the energy consumption rate is assigned a critical
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value which is considered to be a material property. and eqn (5) is used to determine the
critical load. In the cohesive crack model. however. the energy consumption rate is not a
constant but deformation dependent. Equation (5) only determines the equilibrium load.
not necessarily the critical load. The critical load has to be determined by a stability
condition on the potential energy.

When the second order variations of energy II is not singular. that is. when the
corresponding quadratic form will not become zero unless the stress field as well as crack
propagation increment is identically zero. then according to the well-known implicit func­
tion theorem. eqns (4) and (5) allow the displacement ti, and crack length a to be solved as
functions of the loading parameter P. that is. a = a(P) and LI, = LI,(P). After substituting
these solutions into the two equilibrium equations. eqns (4) and (5) become identically zero.
Differentiation of these equilibrium equations with respect to P can be carried out to obtain
the path derivative:

nuuli; + n,wa + nup = o.
nllllli,+ nlllla+nup = 0,

(6a)

(6b)

where a dot above a quantity denotes a derivative of the quantity with respect to P. It is
to be recalled that the integral in the second term in eqn (I) is the generalized displacement
.1 conjugate to P. the partial derivative of the potential energy with respect to loading
parameter P can be expressed as

(7)

The derivative of the total wnjugate displacement til' with respect to the loading parameter
Pis

(8)

Combining egns (6a. b) and (8). the reciprocal slope of the p-ti r curve can be expressed
as:

(9)

when~ nll<l with subscript til' is the partial derivative of nu with respect to (I. but under the
condition that the total dellection ti r is kept constant. The equation can be written as

( 10)

Simil.lr to what was indicated by Hutchinson and Paris (1979), at the moment of crack
instability. the above equation must become zero. However. in this formulation, there is no
need to assume the existence of the R-curve as a material property. As a matter of fact. the
R-curve can be calculated from the cohesive crack model, as was first demonstrated by
Foote et al. (1986). and later by Liang and Li (1991). Furthermore. it is shown that the R­
curve is size dependent. As has been pointed out by Li and Liang (1992c). the R-curve has
to be size dependent so that in the large size limit it can become flat. Otherwise, the cohesive
crack model will not converge to linear elastic fracture mechanics.

In the case of dead weight loading, the reciprocal slope dtirldP presented in eqn (9)
is infinite at the moment of crack instability, consequently, the form nUll has to be singular,
in the sense that n"" has a zero eigenvalue. In the case of displacement controlled loading,
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the crack instability corresponds to snap-back in the P - d r curve. hence ddr/dP = O.
Under such a condition. nu• is no longer singular. In matrix terminology. only a submatrix
of nu• will become singular. However. the discussion of the computational method for the
case of snap-back is out of the scope of this paper.

nu. and nu• are conceptually different. nuu directly determines the stability property
of crack propagation. whereas nu. characterizes the stability property of the whole system.
The foregoing discussion shows that if crack propagation is the only mechanism that will
cause the system to lose stability. n"" may also be used to characterize the stability of crack
propagation under the condition of dead weight loading. This important linkage between
the singularity condition of nuu and the instability of crack propagation was first noticed
by Li and Liang (1992a). It is also to be noted that the key element that causes n"" to lose
its positive definiteness is strain softening. or in other words. the fact that cohesion law is
a decreasing function of crack separation displacement. If the cohesion law is constant
(Dugdale. 1960). then n,," will never lose its positive definiteness. Finally. a word of caution
is necessary. The condition nil" = 0 is only a necessary condition for a system to lose
stability. just as n"" = 0 is only a necessary condition for crack instability. If the structure
is such that n"" is always non-negative. then the singularity condition of n"" should not be
used to predict crack instability.

3. THEORY OF PEAK LOAD DETERMINATION

From now on. it is assumed that the cohesion law is linear. and the surtilce potential
(I> is represented by eqn (3). In order to facilitate the discussion. the following notations are
introduced. Let U;. u,)" be the corresponding virtual work on the part of the boundary
denoted by A. Note that II can be A r for the boundary where force is prescribed. or the
boundary A,., the process zone. When A = A,., it is to be understood that only the virtual
work of normal fon.;es on the normal displ'leement discontinuity across the crack surfaces
is counted. Finally ll(II" l'/) denotes the virtual clastic work of deformation state II, on
displacement 1'" which is the result of the first-order variation of strain energy with respect
to displacement. It is noted that all these forms arc symmetrical in the sense that an
interchange of the positions of their two arguments will not change the value of the forms.

The displacement equilibrium equation (4) can be rewritten. using these notations. as:

(II)

where Vi is any virtu.L1 displacement. by which it means that it satisfies the homogeneous
displacement boundary condition on A,,' [.] is the displacement discontinuity across the
crack surfaces. It is known from previous discussions that at peak load the bilinear form
nuu is singular, mathematically it is the same to state that there is a nontrivial solution II;
such that

( 12)

where t', is the virtual displacement. The terms on the right-hand side of the equation .lre
obviously related to the quadratic term of the surface potential (I>, as shown in eqn (3). It
can be seen that in the domain V the solution lI;satisfies the homogeneous eq uilibrium
equations. On the boundary, it satisfies the homogeneous stress and displacement condition.
In the process zone the boundary condition is such that the normal stress component
(1. = [1I.]It"'c and the shear stress component r = 0, where [un] is the discontinuity of the
normal displacement II. in the process zone.

Since it is assumed that the equilibrium solution u, ofeqn (II) satisfies the homogeneous
condition on Au. the solution II, can be used as a virtual displacement in egn (12). On the
other hand. the non-trivial solution 1110f eqn (12) can be used as a virtual displacement in
eqn (II). Due to the symmetrical property. the first and last terms in eqn (II) cancel out,
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hence the peak load Pcr can be obtained as:

( 13)

It is to be noted that the existence of a non-trivial solution urto eqn (12) depends upon
the crack length a (or process zone length. to be more precise). but is independent of the
equilibrium solution. For given structural dimensions. to find the critical process zone
length such that Ouu is singular is computationally expensive. since the mesh has to be
updated to accommodate the changing process zone length. On the other hand. for a
given process zone length. the singularity condition can be used to determine the critical
dimensions of the structure. When size effect is one of the major objectives. the latter
computational approach is very attractive due to its simplicity. Such a computational
approach h.1S been used by Li and Liang (1992c) to solve the Griffith problem.

4. BASIC EQUATIONS FOR NOTCHED INFINITE STRIPS

For an intinite strip under uniform tension in intinity with symmetrically located
cr'lCks as shown in Fig. 2. the equilibrium equation can be expressed as an integral
equation using the dislocation density function G(x) = <~l'(x. O)j<!X as the unknown. l'(x• .1')

is the vertical displacement component. According to Gupta and Erdogan (1974) the
integral equation can be written as

I"[I I J 1+K. + . +k(x. t) - k(x. - t) G(l) lit = - 4}t" 1r11(x).
./ t -.X t +.X •

( 14)

where }t is the shear modulus. I\' = J - 4v for phllle strain condition and I\' = (3 - ~,)!( I + v)

for plane stress condition. and ~' is the Poisson's ratio. The kernel k(x. t) can be expressed
as

k(x.t) = {, K(x.t.s)e l!h I)'ds.
Ju

and the integrand C'lIl be written as

p j I 1', t

I

I
I

·b ·a I a b x

I

I

p + + I + +
Fig. 2. An infinite strip under remote uniform tcnsion with symmctrically located cracks.

( 15)



Pr~-diction of failure by cohesive crack model

K(:c. t.s) = - {[I + (3+2sh) e-::..h] cosh (sx) -:!sxsinh (s:c) e- :..h-[2sxsinh (s:c)

+ (3-:'sh+e-::'·h
) cosh (sx)][I-2s(h - t)n, (I +4she-- ~h -e- J'h). (16)

It is noted that the function K(x. t . .1') actually has a singularity or the first order at s = O.
but it will be cancelled out in the calculation of k(x. t) - k(x. - t). In this paper. we will
only study two limiting cases. The first case is the central crack. which corresponds to letting
a - O. The second case is the double-notch configuration. which amounts to letting b - h.
As was pointed out by Gupta and Erdogan (1974). for the case where b - h. the kernel
k(x. t) becomes unbounded when both x and t - h. In order to avoid numerical difficulties.
the terms contained in the numerator or K(x. 1• .1') that do not converge to zero fast enough
when 5 - x will be subtracted from. and then added to K(x. t.s). After this modification.
the integral equation can be written as

lit [I I ] 1+/\-- +-~ +kr(x. t) +k,(x. I) G(t) dl = - -- 7ta(x).
<I I-x I+X ~JI

where kr(x. t) is a Fredholm kernel defined as

k,(x./) = -k(x./)+f' [K(x.l.s)-K,(x.l.s»)e-\:'h- II'ds.
II

( 17)

( 18)

The expression for k(x. t) and K(x. 1• .1') has hcen defined in eqns (15) and (16). respectively.
The expression K, is the term in K(x. 1• .1') that causes k(x. I) to be unhounded at x. / = h.
and is found to be

K, = e" {-:. + [3 (It - I) + (h - x) Is - :'s:'(1t - t)(1t - x)}. ( 19)

However. K, can bc integrated analytically to yield the dclinition for k, as shown below:

k,(x.t) = i" K,(x.I.s)e':'h
II

/I -:. 3(1I-t)+(It-x) 4(h-t)(h-x)
-, ds = ---.------- + -0 ----- ---,--- - ---, ••-.

2h-x-t (:'h-x-t)- (2h-x-t)'

(20)

It is seen that k, indeed h~IS strong singularity when x. I = It. Such a singuhlrity is necessary
in order for the solution G(x) to be free of power singularity at x = h. Although the selection
or KJ'C. t• .1') is arbitrary to some extent. the resulting k,(x. t) should always be determined
via eqn (20) from the selected K, . For an unknown reason. the corresponding expressions
given in Gupta and Erdogan's paper (1974) do not seem to be related in this way.

The function tT(x) is the stress component normal to the crack surfaces. In accordance
with eqn (12). the stress is determined by the linear term in the cohesion law with the
process zone. that is. a(x) = 2};r(x)/Il'c- The factor 2 is introduced because r is only one
half of the erack opening displact.:mt.:nt.

In order to simplify the notation. let's first introduce a linear coordinate transformation
so that in both cases the crack tip corresponds to x = I. On the other hand. x = 0 will
correspond to the edge point for the cast.: of t.:dgt.: cracks. and correspond to the central
point of the crack for the case of a central crack. Furthermore. let {J be a real number
between 0 and I such that the process zone lies between {I and I. With such notations. the
integral equution cun be expressed us

4JI I fl .r(x)
---- - AI(x.t)G(t) dt = H(x -{1)2}, --- .
1+ /\ It II 11',

(21 )

where H(x - {J) is the Heuviside step-function such that if x ~ {J. the function is zero.
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otherwise it is l. The integral kernel M(x. c) should take its corresponding fonn according
to eqns (17) or (14) for different crack configurations.

The numerical solution uses the following representation of the unknown function
G(x) :

cp(x)
G(x)= ~.

y I-x~

(22)

so that the new unknown function cp(x) is free of the inverse-square-root singularity in the
crack tip x = I. The displacement v can be represented by the new unknown function
through the following integration:

fI cp(t)
v(x) = -d ~df.

x y I-r
(23)

where d is the total crack length. In the case of an edge crack. d is the length of one crack;
in the case of a central crack. d is one half of the crack length. The quadrature points f"

and the collocation points x, are defined according to Gupta and Erdogan (1974) as:

(
2k-1 )

f" = cos 4n+21t . x, = cos (2::1). (24)

where n is the total number of quadmture points, k and r vary from I to fl. The discretized
integral equation can be written as

(25)

where the coetlicients B", arc calculated from egn (23). Trapezoidal formula or Simpson's
formula is used to interpolate the function cp among the quadrature points f". The upper
limit s on the right-hand side of eqn (25) depends upon the value of IJ such that x, is the
closest to IJ. Actually in this computational scheme. If is chosen to be equal to x, successively
for r = I. 2, 3.... ,as will be seen in the fOllowing discussion. Equation (25) can be further
written in a matrix form as

(26)

The subscript s of [B) means that all elements starting with row s+ I and thereafter are
zero. Such a structure is caused by the step-function H(x-fJ). The quantity d'" is called the
nondimensional crack length and is defined as d/(h' The characteristic length (h of given
material is defined as

(27)

which is basically the same as the one used by Hillerborg ef al. (1976). However, the above
definition recognizes the difference between the plane stress condition and the plane strain
condition.

Equation (26) is the discretized form of the singularity condition for fl ••. In particular,
the singularity condition can be satisfied by either adjusting the process zone length for
given d"', or by adjusting d'" for a given process zone length. In the latter approach, (26)
can be viewed as an eigenvalue problem with 2d'" as its smallest eigenvalue. The nontrivial
solution u,"'can now be recognized as its corresponding eigenfunction.

It is noted that {J is related to the crack length by the relation {J = do/d. where do is the
initial crack length. do is considered as a given data. while d varies with {J. Consequently.
in all previous expressions (including those integral kernels which have had the linear
coordinate transformation of their arguments x and f. since the transformation depends
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upon d), d should be replaced by dolp. With these notations, our calculation can be described
as being given f1 to find £In such that (26), the singularity condition of n"", can be satisfied.

After the nontrivial solution is found through eqn (26), the corresponding displacement
can be obtained by the following equation:

{v*} = [B]{qI}. (28)

The peak load can be determined by eqn (13). Notice that the tension in the infinite
can be equivalently transferred onto crack surface as a uniform pressure, the function b; is
I in the direction of crack Qpening and zero otherwise. Hence eqn (13) can be expressed as

r"J (''''(x) dx
P"r J"
j; =1"-1­

l'*(x)dx
o

(29)

where the proper numerical quadrature rule should be applied to evaluate these two
integrations. Now for a given value of p, the peak load can be determined by eqn (29). and
the corresponding size do can be determined from the eigenvalue of eqn (26).

5. NUMERICAL RESULTS

In order that the ohtained peak load results can be compared with the linear clastic
fracture mechanics theory. the following quantity is defined

(30)

In linear ehlstic fracture mechanics. 'I is proportional to the stress intensity factor. and is a
constant within a group of geometrically similar specimens. In the cohesive crack model.
however. 'I varies with specimen size even in a geometrically similar group. Such a scaling
ellcct by the cohesive crack model is due to the fact th'lt the size of the process zone is no
longer negligible. The variation 01"1 is the reason why linear clastic fractun: mechanics
should not be applied.

There arc two dillcrent ways to c.l1ibrate a stress intensity t~lctor from the peak load
solution. One way is to usc the initial crack length as is implied in eqn (30). the other is to
lise the total crack length d. Using total crack length is a practice similar to the etfective
crack length method. It is usually assumed that the etfective crack length method can be
used to compensatc the nonlinear effect in thc crack tip. Our calculation suggests that the
ellcct of such a moditication is quite complicated. In Figs 3-5 thc results are shown of
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Fig. 3. " values of central cracks with doth .. 0.1.
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I.:l.:ntrall.:r'lI.:ks with ditlcrent crack-width ratios do/h. The abscissa labeled "size" is either the
total crack length d or the initial crack length do, depending upon the curve it represents.
It can be seen that the dilfcrence bctween the two calibrating methods is quite dramatic
whcn the crack-width ratio is small. but become closer to each other when the notch
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becomes deeper. Similar trends can be seen in edge crack specimens shown in Figs 7-9.
Such a variance in effective-crack-Iength calibration can be attributed to the interaction
between crack and boundary. When there is no boundary present. such as a central crack
in an infinite plate. the 'I-values are plotted in Fig. 6. In this case. the 'I value according to
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the effective-crack-length method is a monotonically decreasing function of size. quite
different to the results in the strips. However. in all these cases. the '1 value calculated using
the initial crack length do is always an increasing function of specimen size.

Comparing the results of central cracks in an infinite strip with the results of a central
crack in an infinite plane. it can be seen that the calculation can be carried out for very
small size d"1; in an infinite plane. while there is an obvious lower limit for d~ in an infinite
strip. In the case of an infinite plane. the peak load Po, converges to the tensile strength /,
when d~ aproaches zero. In the case of an infinite strip. the smallest d~ obtainable from the
calculation is finite. and the corresponding peak load is significantly less than (I-do/h)/,.
A question naturally arises: if the size d~ is less than the lower limit. is the cohesive crack
model still applicable?

Physically. it is easy to understand that when the size approaches zero. the stress state
becomes increasingly uniform. consequently. the strength theory can be recovered from the
cohesive crack model. However. in the case of an infinite strip. the strength theory limit
cannot be reached. Since the width of a strip is finite. under remote tension. the process
zone may need to be stretched to be very long before the peak loud can be reached. When
the required process zone length exceeds the available ligument length. the strip is failed
before the load-deflection curve can have a horizontal tangent. In other words. the strip is
failed by crack traversal. not by crack instability. The theory presented in this paper can
only be applied to find the load of the instability cmck. That is why there will be a nonzero
lower limit d~. However. that is not to say that the cohesive crack model cannot be applied
in this case. For examp1c. Hillerborg's method can still be used to find the load when a strip
is f'likd by crack traversal.

When the size d~ is large. the dillcrence between the two calibrating methods becomes
insignificant. Because the relative process zone length of the specimen becomes very small.
the relative difrerence between do and d becomes very small. The calculated tf value
approaches a constant. which is determined by material properties as well as the ratio do/Iz.
It is noted that the case of a central cmck in an infinite plane can be treated as a central
crack in an infinite strip with d,,/Iz == O. The Grillith solution can be written as

J8/l 2,'
Pt; == I +K lu/o '

(31 )

Bec.luse the surface energy 2y is equal to the total work needed to create a new crack
surface. which isj;w.j2 in the cohesive crack model with linear softening. the above equation
can be equivalently written as

Pc; 0.564

i = j;j~ = J~/~'
(32)

That is to say. the t] value calculated according to eqn (30) approaches 0.564 in the large
size limit for central cracks in an infinite plane. In the case of a central crack in an infinite
strip. however. there will be a correction factor ltdn/h) such that in the large size limit. the
t] value calculated according to eqn (30) will be equal to 0.564!f(du/h). Similarly. for the
edge crack configuration. there will also be a correction factor. denoted as f2(clo/h) such
that in the large size limit. t] = 0.564!f2(du/h). Evidently, these correction factors arc the
stress intensity factors in their respective crack tips under unit load. and their values can
be found. for instance. in the paper by Dclale and Erdogan (1977) and Gupta and Erdogan
(1974). On the other hand. if the calculated tl is multiplied by Jandf2' respectively. then
the modified '1 value will all converge to the same value. that is 0.564, in the large size limit.
These results arc shown in Figs 10-11 for central-crack and edge-crack configurations.

It should be pointed out that the numerical method employed herein only has a linear
convergence rate in the large size range. For instance. when there are less than. say. 20
quadrature nodes within the process zone (that is, between {J and I). the obtained peak
load is underestimated. If the number of quadrature nodes fl is doubled. the error will only
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be reduced by one half. Consequently. the theoretical value cannot be touched but only
approached. When n is in the region of 200. the largest" (after correction by multiplying
by1 or 12) is only about 95% of 0.564. Such accuracy can hardly be considered as totally
satisfactory. However, other than in the large size range. the accuracy is excellent. judging
from the convergence of the numerical results. Since the solution in the large size limit can
be known by a linear elastic fracture mechanics solution. such a deficiency in the numerical
procedure does not seem that unbearable. Nonetheless. it is hoped that a better numerical
approach will be taken on in a future study.

6. CONCLUSIONS

In this paper. the potential energy principle of the cohesive crack model is discussed
under the assumption that the loading devices have finite compliance. The peak load
solution is derived based on the crack instability condition. It is demonstrated that under
dead weight loading. crack instability can be formulated as a singularity condition of Ouu.
the second-order variance of potential energy with respect to displacement. Singular integral
equation is used to express the singularity condition of Ouu in infinite strips with either
central cracks or edge cracks. The obtained peak load solution is expressed in the form of
11 as a function of specimen size. The behavior of such solutions in both small size range
and large size range is discussed.



The phenomena of failure are diverse and compli~ated. b~ no means is the stability
theory discussed herein meant to embra~e all the failure mechanisms. Even in the case of
simple tension we can distinguish between failure by ~rack instability and failure by cra~k

traversal. However. the con~eptof crack instability does seem to provide a common ground
to understand nonlinear fra~ture mechanics and linear fra~ture me~hanics. as well as simple
strength theory. The method of associating a critical quantity with failure only works in
limiting cases. In a general situation. the con~ept that identifies failure with instability seems
to be more fundamental than the con~epl of criti~al quantity in understanding failure
phenomena.
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