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Abstract—The potential energy principle of the cohesive crack model is discussed under the con-
dition that the loading device has finite compliance. The relation between crack instability and the
second-order variance of the potential energy is examined. With linear softening law, a simple peak
load solution is derived from the singularity condition of the potential energy. The obtained
formulation is then applied to infinite strips with either central cracks or edge cracks loaded by
remote uniform tension. The convergence of the cohesive crack model to linear elastic fracture
mechanics solution is demonstrated. It is emphasized that although the concept of failure by crack
instability is not ubiquitous, it can provide a common ground to unify linear and nonlinear fracture
mechanics as well as tensile strength theory.

[. INTRODUCTION

In the current framework of solid mechanics, a solid is considered to be failed either by
excessive deformation, or by a loss of stability as in the example of Euler's strut, or by
breakage. In the latter case, when material is clastic and nonlinear hardening deformation
(such as plastic flow) is insignificant, failure by breakage is cither studicd by conventional
(tensile) strength theory, or by fracture mechanics. Both theories assume that the breakage
of a solid can be associated with certain constant critical quantitics which in turn can be
extracted from the deformation and stress ficlds in the solids. In this perspective, fracture
mechanics and strength theories are similar in nature, except that the critical quantities
used in fracture mechanics are size dependent, while the critical quantitics in ordinary
strength theories are size independent.

[t is generally accepted that while fracture mechanics is suitable for the prediction of
rupture load when the crack size is large (compared to an inherent material length), strength
theories should be used when the crack size is small. Furthermore, between these two
extremes, there should be a nonlinear fracture mechanics that can provide a transition from
a strength theory to fracture mechanics. It should be remembered that the process of
cracking has to be accompanied by stress softening and deformation localization. Such
softening and localization is the major source of nonlinearity for a class of materials, which
can be classified as quasi-brittle. Griffith (1920) realized that the effect of such softening
and localization was not considered in his theory, and he provided an argument on why
such softening behavior can be neglected for the case of brittle fracture:

**... The molecular attraction across such a crack must be small except very near its
ends; it may therefore be said that the application of the mathematical theory of elasticity
on the basis that the crack is assumed to be a traction-free surface, must give the stresses
correctly at all points of the body, with the exception of those near the ends of the crack.
In a sufficiently large crack the error in the strain energy so calculated must be negligible.”

However, in later studies of fracturc mechanics, the softening and localization behavior
is still not considered, even when the zone of crack formation is no longer small and
negligible. Irwin (1948, 1961) is responsible for advocating the idea that such a nonlincar
zone may be taken care of by modifying the concept of surface energy and using an effective
crack length. In recent developments the hardening part of nonlinearity is included in
constitutive laws. Rescarch has usually focused on devising better fracture criteria that can
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somehow characterize nonlinear deformation around the crack up. Since Griffith's argu-
ment can no longer be applied in these cases due to the presence of a considerable zone of
crack formation, the validity of neglecting the softening effect in studies of nonlinear fracture
mechanics for quasi-brittle material should be seriously questioned.

An alternative approach in which attraction is included in the equilibrium equations
was forwarded by Barenblatt (1962). Among his many discoveries. Barenblatt demonstrated
that when attraction is considered. a fracture mechanics without stress singularity can be
established ; furthermore, if the zone of attraction is vanishingly small, this theory predicts
the same rupture load as Griffith theory. However, Barenblatt did not consider the case
where process zone (that is. the zone of attraction, the crack formation zone) is not small.
On the other hand, although Dugdale’s cohesive crack model (1960) has no restriction on
process zone size, the feature of stress softening is not captured in his assumption of constant
cohesion. Based on finite element technique. Hillerborg et al. {1976) developed a numerical
method to calculate crack formation and propagation. Softening cohesion law s formally
introduced as a constitutive relation for crack formation. For each given process zone
length, the load and load-line deflection can be determined by requiring that stress at the
crack tip be equal to tensile strength. The most interesting feature is that the rupture load
can now be naturally defined as the peak value of the load and load-line deflection curve.
Hence, constant critical quantitics are no longer needed as in the conventional nonlincar
fracture mechanices.

Hillerborg's cohesive crack model was summarized as a potential energy principle
advanced by Li and Liang (19924) for the first time. As will be bricfly reviewed in the
next section, Gritlith’s concept of energy bilance is extended to include cffective crack
propagation in the new formulation. In particular, the rupture load of the cohesive crack
model is identificd with the critical condition of the sccond-order variation of the potential
energy. This discovery scems o have its far-reaching implication in the study of solid
mechanics. In fact, it demonstrated for the first time that failure by breakage can also be
perceived as a stability problem ol solid mechanics, provided that proper constitutive laws
are included in the mathematical modeling.

When lincar-softening cohesion law is used, such a theory was immediately applied to
solve the peak load of 3-point beams (Li and Liang, 1992a), under certain structural
mechanics type assumptions on crack opening profile, a very successful analytic solution
was obtained. In the same line, a numerical method was developed by Li and Liang (1992b)
to solve the peak load without utilizing any assumption on crack opening profile. Using an
cigenvalue problem introduced therein, it was shown that under the critical condition, the
peak load can be determined without even referring to the crack tip criterion. Later on,
such a numerical method was reformulated in the space of continuous functions (Li and
Liang, 1992¢). With this mcthod, the peak load of the Griflith problem, that is, a finite
crack in an infinite plate under remote uniform tension, was solved in the whole range.
Numerically it was confirmed that the stability theory will converge to strength theory in
the small size limit, and will approach the mechanics of brittle fracture in the large size
limit. Thus it is demonstrated that the stability concept can serve as a theoretical foundation
for the breakage failure of solids, both strength theory and mechanics of brittle fracture
can be obtained as the limiting cases of the stability theory.

In this paper, the behavior of peak foad will be studied for an infinitc strip under
uniform tension with central cracks or symmetrically located edge cracks. Due to the
interaction between crack and boundary, many new features of the peak load solution are
revealed.

2. THEORY OF CRACK STABILITY

As was shown by Li and Liang (1992a), the cohesive crack model can be represented
by a potential cnergy principle. Under the condition of proportional and monotonic loading,
the system shown in Fig. | can be assigned a potential energy [T for a given crack length «
as follows :
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Fig. 1. Schematics of an gJastic body with a cohesive crack. the loading device has finite compliance.
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where I is the strain energy density function defined on body V'; u, is the admissible
displacement field of the system. and g, its corresponding strain ficld: b, is the given
boundary force distribution defined on A, and P is the loading parameter: C,, is the
compliance of loading devices ; ® is called a surface potential defined in the part of boundary
Ap called the process zone in which cohesive forces act across the crack surfaces; w is the
crack separation displacement (normal displacement discontinuity across crack surfaces).
The surface potential ® can be defined for any given cohesion faw o = f(w) as:

D) = J"' S()de. (2)

The above definition is a straightlforward genceralization of surface potential when
surface force varies with surface displacement. When the cohesion law is lincar-softening
up to a threshold value w, its corresponding surface potential can be expressed as

d(w) = j;J‘ (I - v)dr =./;<w-- :- > 0w, (3)
[ We 2w

where /, is the tensile strength of the material. When the separation w approaches w,, the
cohesive stress o decreases to zero. Therefrom, @ becomes a constant.

The displacement equilibrium of the system is defined by equating to zcro the first-
order vuriation of the potential 1T with respect to displacement

o0, dV - PJ hdu, dd — L Sw)dwdA. 4

Ay

0=TI,-du =J

B

In addition to the displacement equilibrium as described by (4), there is also the concept
of crack equilibrium. For a given crack length o, the load P is to be determined by the
following crack equilibrium equation. In Hillerborg's model, crack equilibrium is expressed
as the condition when the tensile stress at crack tip is equal to tensile strength of the material.
The explicit formulation of the crack equilibrium condition in the following form is due to
Li and Liang (1992a):

ol ) Cy .4 ¢ <
0=T, = =+ (j wd V—-PJ b dd— = P~)+ nf& j d(w) dd. (5)
3 Ar ’ Ap

da  Qu

The first three terms in the parentheses on the right-hand side of eqn (5) can be recognized
as the energy release rate; whereas the last term is the energy needed to create a unit area
in the process zone and therefore can be referred to as the energy consumption rate. In
Griffith theory and Barenblatt theory, the energy consumption rate is assigned a critical
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value which is considered to be a material property. and eqn (5) is used to determine the
critical load. In the cohesive crack model, however, the energy consumption rate is not a
constant but deformation dependent. Equation (5) only determines the equilibrium load.
not necessarily the critical load. The critical load has to be determined by a stability
condition on the potential energy.

When the second order variations of energy Il is not singular, that is, when the
corresponding quadratic form will not become zero unless the stress field as well as crack
propagation increment is identically zero, then according to the well-known implicit func-
tion theorem, eqns (4) and (5) allow the displacement v, and crack length a to be solved as
functions of the loading parameter P, that is, a = a(P) and u, = u(P). After substituting
these solutions into the two equilibrium equations, eqns (4) and (5) become identically zero.
Differentiation of these equilibrium equations with respect to P can be carried out to obtain
the path derivative:

nuuui+ nuud + nuF = 0' (63.)
nuu“‘i + nuad + nuP = 0* (6b)

where a dot above a quantity denotes a derivative of the quantity with respect to P. It is
to be recalled that the integral in the second term in eqn (1) is the generalized displacement
A conjugate to P, the partial derivative of the potential energy with respect to loading
parameter P can be expressed as

ol
5‘,; = _A_C."P= —A'r. (7)

np =
The derivative of the total conjugate displacement A, with respect to the loading parameter
Pis

dA, d .
ip = ap—0n =~ ®

Combining eqns (6a, b) and (8), the reciprocul slope of the P-A; curve can be expressed
as:

dA . .
8'}5 = nuuuluj - (nuu)Aru-' (9)
where [, with subscript A, is the partial derivative of Il, with respect to a, but under the
condition that the total deflection A is kept constant. The equation can be written as

o, dp
(nml)Ar = ( aa~>Ar - nua+nul‘ .dz' (IO)

Similar to what was indicated by Hutchinson and Paris (1979), at the moment of crack
instability. the above equation must become zero. However, in this formulation, there is no
need to assume the existence of the R-curve as a material property. As a matter of fact, the
R-curve can be calculated from the cohesive crack model, as was first demonstrated by
Foote er al. (1986), and later by Liang and Li (1991). Furthermore, it is shown that the R-
curve is size dependent. As has been pointed out by Li and Liang (1992c), the R-curve has
to be size dependent so that in the large size limit it can become flat. Otherwise, the cohesive
crack model will not converge to linear elastic fracture mechanics.

In the case of dead weight loading, the reciprocal slope dA,/dP presented in eqn (9)
is infinite at the moment of crack instability, consequently, the form I1,, has to be singular,
in the sense that I, has a zero eigenvalue. In the case of displacement controlled loading,
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the crack instability corresponds to snap-back in the P—A; curve. hence dA/dP = 0.
Under such a condition. I1,, is no longer singular. In matrix terminology. only a submatrix
of I1,, will become singular. However, the discussion of the computational method for the
case of snap-back is out of the scope of this paper.

I1,, and I, are conceptually different. I1,, directly determines the stability property
of crack propagation, whereas I1,, characterizes the stability property of the whole system.
The foregoing discussion shows that if crack propagation is the only mechanism that will
cause the system to lose stability. [1,, may also be used to characterize the stability of crack
propagation under the condition of dead weight loading. This important linkage between
the singularity condition of I1,, and the instability of crack propagation was first noticed
by Li and Liang (1992a). It is also to be noted that the key element that causes IT,, to lose
its positive definiteness is strain softening. or in other words, the fact that cohesion law is
a decreasing function of crack separation displacement. If the cohesion law is constant
(Dugdale, 1960), then I1,, will never lose its positive definiteness. Finally. a word of caution
is necessary. The condition I1,, = 0 is only a nceessary condition for a system to lose
stability. just as [T, = 0 is only a necessary condition for crack instability. If the structure
is such that I1,, is always non-negative, then the singularity condition of 1, should not be
used to predict crack instability.

uu

3. THEORY OF PEAK LOAD DETERMINATION

From now on, it is assumed that the cohesion law is linear, and the surface potential
® is represented by eqn (3). In order to facilitate the discussion, the following notations are
introduced. Let (f,u), be the corresponding virtual work on the part of the boundary
denoted by A. Note that 4 can be A, for the boundary where foree is prescribed, or the
boundary A, the process zone. When A = A, it is to be understood that only the virtual
work of normal forces on the normal displacement discontinuity across the crack surfaces
is counted. Finally a(u,, v;) denotes the virtual clastic work ol deformation state u, on
displacement r;, which is the result of the first-order variation of strain energy with respect
to displacement. It is noted that all these forms are symmetrical in the sense that an
interchange of the positions of their two arguments will not change the value of the forms.

The displacement equilibrium equation (4) can be rewritten, using these notations, as:

a(“n l") - P(hn l‘l):l, +_/l(l- l':).-l,._ ;{L ([“i]' [[':]),-I,. = 0‘ (l l)

where v; is any virtual displacement, by which it means that it satisfies the homogencous
displacement boundary condition on A,-[*] is the displacement discontinuity across the
crack surfaces. It is known from previous discussions that at peak load the bilincar form
I1,, is singular, mathematically it is the same to state that there is a nontrivial solution u*
such that

a(urv) = f‘ ([e*]. (6D, Vo, (12)

where v, is the virtual displacement. The terms on the right-hand side of the equation are
obviously related to the quadratic term of the surface potential @, as shown in eqn (3). It
can be scen that in the domain V the solution u*satisfics the homogencous equilibrium
equations. On the boundary, it satisfies the homogencous stress and displacement condition.
In the process zone the bounduary condition is such that the normal stress component
6, = [u,]fiv. and the shear stress component t = 0, where [i,] is the discontinuity of the
normal displacement u, in the process zone.

Since it is assumed that the equilibrium solution 1, of eqn (1 1) satisfies the homogeneous
condition on A,, the solution , can be used as a virtual displacement in eqn (12). On the
other hand, the non-trivial solution «*of eqn (12) can be used as a virtual displacement in
eqn (11). Due to the symmetrical property. the first and last terms in eqn (11) cancel out,
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hence the peak load P, can be obtained as:

Sllouk),,

R
) (hp“f};,

tud

(13}

[tis to be noted that the existence of a non-triviai solution «*to eqn (12) depends upon
the crack length a (or process zone length. to be more precise), but is independent of the
equilibrium solution. For given structural dimensions. to find the critical process zone
length such that IT,, is singular is computationally expensive. since the mesh has to be
updated to accommodate the changing process zone length. On the other hand, for a
given process zone length, the singularity condition can be used to determine the critical
dimensions of the structure. When size effect is one of the major objectives, the latter
computational approach is very attractive due to its simplicity. Such a computational
approach has been used by Li and Liang (1992¢) to solve the Griffith problem.

4. BASIC EQUATIONS FOR NOTCHED INFINITE STRIPS

For an infinite strip under uniform tension in infinity with symmetrically located
cracks as shown in Fig. 2. the equilibrium equation can be expressed as an integral
equation using the dislocation density function G(x) = ¢e(x, 0)/dx as the unknown. r(x, v)
is the vertical displacement component. According to Gupta and Erdogan (1974) the
integral equation can be written as

LN ] Ky iy Gl dr = |+ ) "
a l—.\'+!+.\'+ (GO =Ry, =0 (G de = 45 na(x), (14)

where g is the shear modulus, k = 3 —4v for plane strain condition and k = (3=v}/{(1 +v)
for plane stress condition, and v is the Poisson’s ratio. The kernel £(x, 1) can be expressed
as

k(x,1) = J K(x.r,s)e 0 mdy, (15)
i}

and the integrand can be written as

Fig. 2. An infinite strip under remote uniform lension with symmetrically located cracks.
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K(x.t.5) = = {[1 + (3+ 2sh) e~ *"]cosh (sx) — 2sxsinh {(5x) e~ ** — [2sxsinh (sx)

+(3=2sh+e ") cosh (s0)){l =2s(h—0)]', (1 +4she " —e ). (16)

[t is noted that the function K(x. ¢. 5) actually has a singularity of the first order at s = 0,
but it will be cancelled out in the calculation of k(x.t) —k(x. —¢). In this paper. we will
only study two limiting cases. The first case is the central crack. which corresponds to letting
a — 0. The second case is the double-notch configuration. which amounts to letting b — 4.
As was pointed out by Gupta and Erdogan (1974). for the case where b — h. the kernel
k(x. 1) becomes unbounded when both xand ¢t — A. [n order to avoid numerical difficulties,
the terms contained in the numerator of K(x. r,s) that do not converge to zero fast enough
when s — > will be subtracted from. and then added to A(x. t.5). After this modification,
the integral equation can be written as

Jh —I——+~f—l~~+k ) A () (G de = |5 ) 17)
B P pv, L) 6o = —-i;[—na(x. (
where k(x. 1) is a Fredholm kernel defined as

k(x.0n) = —/\‘(.\'.l)+J [K(x.1.5) =K, (x.t.5)]) e " ds, (18)

The expression for A(x, 1) and K(x, ¢, 5) has been defined inegns (15) and (16), respectively.
The expression K, is the termvin Ay, £, s) that causes A(x, 1) to be unbounded at x, ¢t = A,
and is found to be

K, =c¢{=2+[3h=0+(h=x)}s=25°(h=1)(h—x)}. (19)
However, K, can be integrated analytically to yicld the definition for &, as shown below

L7 —') — — . — —_
k,(.\ul)'_"[ Ko(xnge® iy = T S0t hoy) 4(i=nli-x)

Ui—x—t"  Qh=x-17 " Qh-x—-1) "
(20)

It is seen that &, indeed has strong singularity when x, ¢ = /1. Such a singularity is necessary
in order for the solution G(x) to be frec of power singularity at x = /. Although the selection
of K, (x. 1, ) is arbitrary to some cxtent, the resulting k,(x, 1) should always be determined
via eqn (20) from the selected K, . For an unknown reason, the corresponding expressions
given in Gupta and Erdogan’s paper (1974) do not seem to be related in this way.

The function g(x) is the stress component normal to the crack surfaces. In accordance
with eqn (12), the stress is determined by the linear term in the cohesion law with the
process zone, that is, a(x) = 2f(x)/w. The fuctor 2 is introduced because ¢ is only onc
half of the crack opening displacement.

In order to simplify the notation, let’s first introduce a linear coordinate transformation
so that in both cases the crack tip corresponds to x = 1. On the other hand, x = 0 will
correspond (o the edge point for the case of edge cracks, and correspond to the central
point of the crack for the casc of a central crack. Furthermore, let f# be a real number
between 0 and | such that the process zone lies between ff and t. With such notations, the
integral equation can be expressed as

A | of v
|—4 fk T't J M(x.0G(N dt = H(x— )2/, L‘(‘f) @n

where H(x—f) is the Heaviside step-function such that if x < f§, the function is zero,
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otherwise it is |. The integral kernel M (x, ¢) should take its corresponding form according
to eqns (17) or (14) for different crack configurations.
The numerical solution uses the following representation of the unknown function

G(x):
p(x)

JI=

so that the new unknown function @(x) is free of the inverse-square-root singularity in the
crack tip x = 1. The displacement v can be represented by the new unknown function
through the following integration :

G(x) = (22)

{
v(x)=—¢1j LAV (23)

J1I=t

where d is the total crack length. In the case of an edge crack. d is the length of one crack ;
in the case of a central crack, d is one half of the crack length. The quadrature points ¢,
and the collocation points .x, are defined according to Gupta and Erdogan (1974) as:

2k —1 rn
= = — 2
t, = COs (4n+ 5 n>‘ X, = COS (2”+ l)' (24)

where 7 is the total number of quadrature points, kK and r vary from | to n. The discretized
integral equation can be written as

| p 2d
A = c - 2
Ml T +n kz. | M(x,, t)o(t) = Hix, =)/, W, k§_| Bp(ts), (25)

where the coctlicients 8, are calculated from eqn (23). Trapezoidal formula or Simpson’s
formula is used to interpolate the function ¢ among the quadrature points ¢,. The upper
limit s on the right-hund side of eqn (25) depends upon the value of # such that x, is the
closest to ff. Actually in this computational scheme, f# is chosen to be equal to x, successively
forr = 1,2, 3,...,as will be scen in the following discussion. Equation (25) can be further
written in a matrix form as

(Al{p} = 24*(B].{0}. (26)

The subscript s of [B] means that all elements starting with row s+ 1 and thereafter are
zero. Such a structure is caused by the step-function H(x—f1). The quantity «* is called the
nondimensional crack length and is defined as d//l,. The characteristic length [, of given
material is defined as

4uw,

ey

(27)

which is basically the same as the one used by Hillerborg et al. (1976). However, the above
definition recognizes the difference between the plane stress condition and the plane strain
condition.

Equation (26) is the discretized form of the singularity condition for I1,,. In particular,
the singularity condition can be satisfied by either adjusting the process zone length for
given d*, or by adjusting ¢* for a given process zone length. In the latter approach, (26)
can be viewed as an eigenvalue problem with 24* as its smallest eigenvalue. The nontrivial
solution ucan now be recognized as its corresponding eigenfunction.

It is noted that f is related to the crack length by the relation § = d,/d, where d, is the
initial crack length. dj, is considered as a given data, while d varies with ff. Consequently,
in all previous expressions (including those integral kernels which have had the linear
coordinate transformation of their arguments x and ¢, since the transformation depends
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upon d). d should be replaced by 4,/ 8. With these notations, our calculation can be described
as being given f to find ¢, such that (26). the singularity condition of [1,,.. can be satisfied.

After the nontrivial solution is found through eqn (26). the corresponding displacement
can be obtained by the following equation:

{v*; = [Blie}. 28

The peak load can be determined by eqn (13). Notice that the tension in the infinite
can be equivalently transferred onto crack surface as a uniform pressure, the function 5 is
1 in the direction of crack opening and zero otherwise. Hence eqn (13) can be expressed as

!
f r*{x)dx
L (29)

= .
S jv’"(x)dx

where the proper numerical quadrature rule should be applied to evaluate these two
integrations. Now for a given value of f. the peak load can be determined by eqn (29), and
the corresponding size d, can be determined from the eigenvalue of eqn (26).

5. NUMERICAL RESULTS

In order that the obtained peak load results can be compared with the lincar elastic
fracture mechanics theory, the following quantity is defined

Yer y
" =// " Jd3. (30)
t

In linear clastic fracture mechanics, » is proportional to the stress intensity factor, and is a
constant within a group of geometrically similar specimens. In the cohesive crack model,
however, # varics with specimen size even in a geometrically similar group. Such a scaling
effect by the cohesive cruck model is due to the fuct that the size of the process zone is no
longer negligible. The variation of 5 is the reason why linear clastic fracture mechanics
should not be applied.

There are two different ways to calibrate a stress intensity factor from the peak load
solution. One way is to use the initial crack length as is implied in eqn (30), the otheris to
use the total crack fength 4. Using total crack length is a practice similar to the effective
crack length method. It is usually assumed that the effective crack length method can be
used to compensate the nonlinear effect in the crack tip. Our calculation suggests that the
cffect of such a modification is quite complicated. In Figs 3-5 the results are shown of

08 : r :
0.6 y
R 4
02t 4
0.0 . L .
0.01 0.1 1 1Q 100

log(size)
Fig. 3. n values of central cracks with dy/h = 0.1.
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Fig. 4. 4 values of central cracks with dy/h = 0.4
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Fig. 5.y values of central cracks with dy/h = 0.8.

o o 1 A e
0.01 0.1 1 10 100
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Fig. 6. n values of central cracks in an infinite planc.

central cracks with ditferent crack-width ratios /i1, The abscissa labeled *'size™ is either the
total crack length  or the initial crack length o, depending upon the curve it represents.
It can be scen that the difference between the two calibrating methods is quite dramatic
when the crack-width ratio is small, but become closer to each other when the notch
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becomes deeper. Similar trends can be seen in edge crack specimens shown in Figs 7-9.
Such a variance in effective-crack-length calibration can be attributed to the interaction
between crack and boundary. When there is no boundary present. such as a central crack
in an infinite plate. the n-values are plotted in Fig. 6. In this case. the n value according to

0.8 T T T
0.6 } -
& 04t 4
0.2 4
0.0 L L
0.01 0.1 1 10 100
log(size)
Fig. 7.y values of edge cracks with d, o = 0.1,
0.8 T T T
do/h = 0.4
0.6 [ E
& 04} E
0.2} 4
o‘o 1 ' L
0.01 0.1 1 10 100

log(size)

Fig. 8. n values of edge cracks with d, 4 = 0.4.

0.6 T u

d,/h = 0.8

0.4 E

=
0.2+ 1
9.0 A >
0.1 1 10 100

log(size)

Fig. 9. n values of edge cracks with do/h = 0.8.
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the effective-crack-length method is a monotonically decreasing function of size. quite
different to the results in the strips. However, in all these cases. the n value calculated using
the initial crack length d, is always an increasing function of specimen size.

Comparing the results of central cracks in an infinite strip with the results of a central
crack in an infinite plane, it can be seen that the calculation can be carried out for very
small size d3 in an infinite plane, while there is an obvious lower limit for &% in an infinite
strip. In the case of an infinite plane, the peak load p,, converges to the tensile strength f,
when d% aproaches zero. In the case of an infinite strip, the smallest 4§ obtainable from the
calculation is finite, and the corresponding peak load is significantly less than (1 —d/k) £.
A question naturally arises : if the size d¥ is less than the lower limit, is the cohestve crack
model still applicable?

Physically, it is easy to understand that when the size approaches zero, the stress state
becomes increasingly uniform, consequently, the strength theory can be recovered from the
cohesive crack model. However, in the case of an infinite strip, the strength theory limit
cannot be reached. Since the width of a strip is finite, under remote tension, the process
zone may need to be stretched to be very long before the peak load can be reached. When
the required process zone length exceeds the available ligament length, the strip is failed
before the load-deflection curve can have a horizontal tangent. In other words, the strip is
failed by crack traversal. not by crack instability. The theory presented in this paper can
only be applied to find the load of the instability crack. That is why there will be a nonzero
lower limit 3. However, that is not to say that the cohesive cruck model cannot be applied
in this case. For example, Hillerborg's method can still be used to find the load when a strip
is failed by crack traversal.

When the size df is large, the difference between the two calibrating methods becomes
insignificant. Because the relative process zone length of the specimen becomes very small,
the relative difference between o, and o becomes very small. The caleulated 5 value
approaches a constant, which is determined by material propertics as well as the ratio dy/h.
It is noted that the case of a centrad crack in an infinite plane can be treated as a central
crack in an infinite strip with /i = 0. The Griflith solution can be written as

a2y
P = 31
P \/l + K md, GH

Because the surface energy 2y is equal to the total work needed to create a new crack
surface, which is fiw,/2 in the cohesive crack model with linear softening, the above equation
can be equivalently written as

.1 0564
fo 220 (32)
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That is to say, the n value calculated according to eqn (30) approaches 0.564 in the large
size limit for central cracks in an infinite plance. In the casc of a central crack in an infinite
strip, however, there will be a correction factor f{d,/h) such that in the large size limit, the
n value calculated according to eqn (30) will be equal to 0.564/ f(d,/h). Similarly, for the
edge crack configuration, there will also be a correction factor, denoted as f3(dy/Ht) such
that in the large size limit, n = 0.564/ /3(d,/h). Evidently, these correction factors are the
stress intensity factors in their respective crack tips under unit load, and their values can
be found, for instance, in the paper by Delale and Erdogan (1977) and Gupta and Erdogan
{1974). On the other hand, if the calculated n is multiplied by [ and f,, respectively, then
the modified n value will all converge to the same value, that is 0.564, in the large size limit.
These results arc shown in Figs 10-11 for central-crack and edge-crack configurations.

It should be pointed out that the numerical method employed herein only has a linear
convergence rate in the large size range. For instance, when there are less than, say, 20
quadrature nodes within the process zone (that is. between ff and 1), the obtained peak
load is underestimated. If the number of quadrature nodes n is doubled, the error will only
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Fig. 1. Modified n values of different edge-cracked strips.

be reduced by one half. Consequently, the theoretical value cannot be touched but only
approached. When n is in the region of 200, the largest n (after correction by multiplying
by for f,) is only about 95% of 0.564. Such accuracy can hardly be considered as totally
satisfactory. However, other than in the large size range, the accuracy is excellent, judging
from the convergence of the numerical results. Since the solution in the large size limit can
be known by a linear elastic fracture mechanics solution, such a deficiency in the numerical
procedure does not seem that unbearable. Nonetheless, it is hoped that a better numerical
approach will be tuken on in a future study.

6. CONCLUSIONS

In this paper, the potential energy principle of the cohesive crack model is discussed
under the assumption that the loading devices have finite compliance. The peak load
solution is derived based on the crack instability condition. It is demonstrated that under
dead weight loading. crack instability can be formulated as a singularity condition of I1,,,
the second-order variance of potential energy with respect to displacement. Singular integral
equation is used to express the singularity condition of I1,, in infinite strips with either
central cracks or edge cracks. The obtained peak load solution is expressed in the form of
n as a function of specimen size. The behavior of such solutions in both small size range
and large size range is discussed.
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The phenomena of failure are diverse and complicated. by no means is the stability
theory discussed herein meant to embrace all the failure mechanisms. Even in the case of
simple tension we can distinguish between failure by crack instability and failure by crack
traversal. However, the concept of crack instability does seem to provide a common ground
to understand nonlincar fracture mechanics and linear fracture mechanics, as well as simple
strength theory. The method of associating a critical quantity with failure only works in
limiting cases. In a general situation. the concept that identifies failure with instability seems
to be more fundamental than the concept of critical quantity in understanding failure
phenomena.
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